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For an open, time-dependent quantum system, Lindblad derived the most general modification of
the quantum Liouville equation in the Markovian approximation that models environmental effects
while preserving the non-negativity of the system’s density matrix. While Lindblad’s modification is
correct for N-electron density matrices, solution of the Liouville equation with a Lindblad operator
causes the one-electron reduced density matrix (1-RDM) to violate the Pauli exclusion principle.
Consequently, after a short time, the 1-RDM is not representable by an ensemble N-electron density
matrix (not ensemble N-representable). In this communication, we derive the necessary and sufficient
constraints on the Lindbladian matrix within the Lindblad operator to ensure that the 1-RDM remains
N-representable for all time. The theory is illustrated by considering the relaxation of an excitation
in several molecules F2, N2, CO, and BeH2 subject to environmental noise. C 2015 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4906942]

I. INTRODUCTION

Open time-dependent quantum systems are important to
understanding a range of chemical phenomena from molecules
in solvent or protein environments to materials embedded in
a larger-scale structure.1–3 The influence of the environment
on a system’s energy can be as significant or even more
significant than the influence of electron correlation. The
evolution of the closed quantum system is governed by the
quantum Liouville equation, also known as the von Neumann
equation.4,5 For an open quantum system, Lindblad derived the
most general modification of the quantum Liouville equation
in the Markovian approximation that models environmental
effects while preserving the non-negativity of the probability
distribution (or more specifically, the positive semidefiniteness
of the system’s density matrix).6–9

While Lindblad’s operator is correct for N-electron
density matrices, the operator has been observed to cause
significant violation of the Pauli exclusion principle in the time
evolution of the 1-electron reduced density matrix (1-RDM).10

As discussed in Refs. 10–12, the preservation of the fermionic
statistics of the 1-RDM in an open, time-dependent system,
even with an interaction-free Hamiltonian, is a non-trivial
problem. Despite previous difficulties, the generalization of
the Lindblad operator to preserve fermionic statistics is
critical to the accurate treatment of environmental effects
in the time evolution of effective one-electron theories such
as the time-dependent Hartree-Fock and density functional
theories. Constraining the 1-RDM to obey the Pauli exclusion
principle, which requires the eigenvalues of the 1-RDM to
lie between 0 and 1, is equivalent to constraining the 1-
RDM to be ensemble N-representable, that is, representable
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by at least one ensemble N-electron density matrix.13,14 In
this communication, we derive the necessary and sufficient
constraints on the Lindbladian matrix within the Lindblad
operator to ensure that the 1-RDM remains ensemble N-
representable throughout its time evolution, which is
equivalent to its obeying the Pauli exclusion principle for
all time. The theory is illustrated by considering the relaxation
of an excitation in several molecules, F2, N2, CO, and BeH2,
subject to environmental noise.

II. THEORY

A. Fermion conditions on Lindbladian matrices

An open, time-dependent quantum system of N-electrons
can be described by the time dependent N-electron density
matrix D governed by the quantum Liouville equation4

dD
dt
=−i[H,D]+L(D,C) (1)

with a Lindblad term L(D,C) added to account for the
interaction of the N-electron system with its environment6

L(D,C)=CDC†− 1
2
{C†C,D}. (2)

Importantly, the Lindblad term treats the interaction of the
system with the environment while keeping the N-electron
density matrix positive semidefinite at each time, that is,

D ≽ 0. (3)

A matrix is positive semidefinite if and only if all of its
eigenvalues are non-negative. Collectively, this semidefinite
constraint on the matrix and additional constraints that the ma-
trix be (i) Hermitian, (ii) normalized, and (iii) antisymmetric
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in the exchange of its particles ensure that it is an N-particle
density matrix with fermion statistics.13

Although the above formalism is exact, it is often com-
putationally expensive to propagate the N-electron density
matrix as a function of time with the Liouville equation.
One mean-field-like approximation is to replace (i) the N-
electron Hamiltonian with its explicit two-body electron-
electron interactions by an interaction-free Hamiltonian and
(ii) the N-electron density matrix with its explicit treatment of
electron correlation by a 1-RDM. The simplest derivation of
this approximation is to generalize the one-electron Liouville
equation

d 1D
dt
=−i[1H,1D]+L(1D,1C), (4)

where 1D is the 1-RDM, 1H is the one-body interaction-free
Hamiltonian, and 1C is the one-body Lindblad matrix. If we set
Tr(1D)= N , then Eq. (4) can describe not only a one-electron
system when N = 1 but also an ensemble of N non-interacting
one-electron systems when N > 1. As in the N-electron case,
the structure of the Lindblad term in Eq. (2) ensures that the
1-RDM remains positive semidefinite for all time.

Unlike the N-electron density matrix, however, the 1-
RDM has additional constraints to ensure that it represents
an ensemble N-electron density matrix, known as N-rep-
resentability conditions.13,15 In addition to the non-negativity
of the 1-RDM, it is also necessary for the one-hole RDM 1Q
to be positive semidefinite. Therefore, in addition to being (i)
Hermitian and (ii) normalized to N , the 1-RDM must also
satisfy two linear matrix inequalities

1D ≽ 0, (5)
1Q ≽ 0. (6)

Coleman showed that these conditions on the 1-RDM
are necessary and sufficient ensemble N-representability
conditions.13 Furthermore, they are equivalent to the well-
known Pauli principle that the occupation numbers of the
1-RDM must lie between zero and one.

While the Lindblad term by construction is known to keep
the 1-RDM positive semidefinite for all time,6–9 it is necessary
to explore the effect of the Lindblad term on the requisite
positive semidefiniteness of the one-hole RDM. To address
this question, we substitute the expression for the one-particle
RDM in terms of the one-hole RDM

1D = 1I− 1Q (7)

into the Liouville equation with the Lindblad term in Eq. (4).
Because the one-particle identity matrix 1I is time-independent
and commutes with the Hamiltonian, the non-dissipative
portion of Eq. (4) simplifies forthwith, and we obtain

d 1Q
dt
=−i[1H,1Q] − L(1I−1Q,C). (8)

Now, we consider the Lindblad term as a functional of 1I−1Q,

L(1I− 1Q,1C)=−L(1Q,1C)+ [1C,1C†]. (9)

From Eq. (9), it can be seen that to obtain an equation anal-
ogous to Eq. (4) for the one-hole RDM, an added restriction

must be imposed on the Lindbladian matrix 1C. Specifically,
for the 1-hole RDM to evolve according to the Liouville
equation with a Lindblad operator, it is necessary and sufficient
that the second term in Eq. (4) vanishes. If [1C,1C†]= 0, then
Liouville equation for the one-hole RDM can be expressed as

d 1Q
dt
=−i[1H,1Q]+L(1Q,1C), (10)

which is the hole analogue of Eq. (4). Just as in the case
of the 1-electron RDM, this equation keeps the one-hole
RDM positive semidefinite for all time. We have proven
that the time evolution of the one-particle RDM by Eq. (4)
keeps both the one-particle RDM and the one-hole RDM
positive semidefinite for all time under the condition that the
Lindbladian matrix 1C commutes with its adjoint. Therefore,
constraining the Lindbladian matrix 1C such as its commutator
with its adjoint vanishes causes the 1-fermion RDM solution of
the quantum Liouville equation to satisfy the Pauli exclusion
principle for all time (that is, remain N-representable for all
time). For the commutator to vanish, the 1C matrix can be
constrained to be Hermitian S, anti-Hermitian A, or a sum of
Hermitian and anti-Hermitian matrices S+ A, where SA= 0.
This restricted class of 1C includes the generators of Gaussian
semigroups.

B. Fermion conditions on multiple
Lindbladian matrices

Considering the case where there are numerous dissipa-
tion channels represented by multiple Lindbladian matrices,
we can use Eq. (4) as a starting point to generalize the theory
of Sec. II A. Taking the summation of the Lindblad terms over
m channels yields

d 1D
dt
=−i[1H,1D]+

m
i=1

L(1D,1Ci). (11)

By the same method as previously presented, an analogous
equation can be derived for the 1-hole RDM

d 1Q
dt
=−i[1H,1Q]+

m
i=1

L(1Q,1Ci). (12)

Once again, to have Eq. (12) hold true to preserve the fermionic
character of the system, each Lindbladian matrix 1Ci must
satisfy

[1Ci,
1C†i ]= 0. (13)

Constraining each of the Lindbladian matrices 1Ci to be either
Hermitian or anti-Hermitian is sufficient for the 1-fermion
RDM solution of the quantum Liouville equation to satisfy
the Pauli exclusion principle and remain N-representable for
all time.

A specific, physically important example of Lindbladian
matrices that satisfy the above requirement is the case where
each Lindbladian matrix 1Ci is a rank-one projection matrix

1Ci= γiviv
†
i . (14)

If m is chosen to equal the number r of one-electron orbitals
and each vi is a vector representing the ith orbital, then
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TABLE I. The first 8 occupation numbers of F2, N2, and CO are presented at 0.0 fs where they have their time-independent Hartree-Fock values and at 2.0 fs
after evolution of the Liouville equation in the presence of environmental noise. When the Lindbladian matrix 1C is selected to be Hermitian, the occupation
numbers remain between 0 and 1 including those not shown. In contrast, when the Lindbladian matrix 1C is selected to be non-Hermitian, the highest occupation
numbers increase in value to violate the Pauli exclusion principle dramatically by 2 fs.

F2 N2 CO

t= 2.0 fs t= 2.0 fs t= 2.0 fs

Occupation number t= 0 1C=1C† 1C,1C† t= 0 1C=1C† 1C,1C† t= 0 1C=1C† 1C,1C†

1 1 0.9934 3.6364 1 0.8654 5.4281 1 0.8655 3.1680
2 1 0.9235 3.6364 1 0.7666 5.4281 1 0.7677 3.1680
3 1 0.9234 2.3821 1 0.7620 0.7771 1 0.7637 1.6463
4 1 0.9211 2.3821 1 0.7584 0.7771 1 0.7601 1.6463
5 1 0.9202 1.6387 1 0.7539 0.3329 1 0.7586 1.2508
6 1 0.9138 1.6387 1 0.7499 0.3329 1 0.7566 1.2508
7 1 0.9113 0.5483 1 0.7466 0.1778 1 0.7519 0.4827
8 1 0.9105 0.5483 1 0.7196 0.1778 1 0.7218 0.4827

each 1Ci represents the interaction of the ith orbital of the
system with the environment with γi controlling the degree
of the interaction. If we further restrict the number m of
channels to the N occupied orbitals, then we recover the form
of the Lindbladian matrix presented by Pershin et al.10 The
present work shows that the rank-one Lindbladian matrices in
Ref. 10 are a special case of the more general arbitrary-rank
Hermitian Lindbladian matrices that preserve the fermionic
statistics of the 1-RDM for all time. Even within the rank-
one approximation, generalizing the number of Lindbladian
channels from the N occupied orbitals to the r occupied and
unoccupied (virtual) orbitals provides additional flexibility for
modeling the interaction of the system with the environment
that maintains particle-hole symmetry.20,21

III. APPLICATIONS

To illustrate, we consider the time evolution of 4
molecules N2, CO, F2, and BeH2 initialized to their first
excited states. For each molecule, the effective one-electron
Hamiltonian is constructed at the Hartree-Fock level of theory.
Hartree-Fock calculations were performed in the Dunning-
Hay double-zeta basis set16 with the quantum chemistry
package GAMESS.17 For each molecule, the time evolution
was performed with both a Hermitian 1C matrix and a
non-Hermitian 1C matrix. The elements of the 1C matrix
were generated with the random number generator in the
computer algebra system Maple.18 The time propagation of
the 1-RDM was performed by solving the Liouville equation
with a fourth-fifth order Runge-Kutta method for solving
initial-value differential equations.19

Table I presents the first 8 occupation numbers of F2,
N2, and CO at 0.0 fs as well as at 2.0 fs. At 0.0 fs,
the occupation numbers are those from solving the time-
independent Hartree-Fock approximation to the Schrödinger
equation. When the Lindbladian matrix 1C is selected to
be Hermitian, the interaction of each electronic system with
an environment causes the occupations to change from 1
and 0 for the occupied and unoccupied orbitals, respectively,
to values between 0 and 1 at 2 fs. In contrast, when the
Lindbladian matrix 1C is selected to be non-Hermitian, the

highest occupation numbers increase in value to violate the
Pauli exclusion principle dramatically by 2 fs.

Figure 1 shows the twelve occupation numbers of BeH2
as functions of time using (a) a Hermitian and (b) a non-
Hermitian Lindbladian matrix 1C. With a Hermitian matrix

FIG. 1. The twelve occupation numbers of BeH2 are shown as functions of
time using (a) a Hermitian and (b) a non-Hermitian Lindbladian matrix 1C .
With a Hermitian matrix 1C , the occupation numbers lie between 0 and 1
in accordance with the Pauli exclusion principle, but with a non-Hermitian
1C matrix, the occupation numbers dramatically exceed 1 as the electrons in
BeH2 assume bosonic character.
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1C, the occupation numbers lie between 0 and 1 in accordance
with the Pauli exclusion principle, but with a non-Hermitian
1C matrix, the occupation numbers dramatically exceed 1 as
the electrons in BeH2 assume bosonic character. The non-
Hermitian matrix 1C has the ability to convert a system
obeying fermionic statistics to a system obeying only bosonic
statistics.

IV. DISCUSSION AND CONCLUSIONS

Addition of the Lindblad operator to the quantum
Liouville equation provides the most general time evolution
within the Markovian approximation that preserves the non-
negativity of the N-electron density matrix.6–8 The most
common use of the quantum Liouville equation in many-
electron quantum systems, however, is to evolve a RDM
such as the one-electron RDM according to an effective
one-electron Hamiltonian. In this case, Lindblad’s derivation
is not complete because additional constraints, known as
N-representability conditions, are necessary to ensure that a
RDM represents at least one ensemble N-electron system.13–15

The breakdown of fermionic statistics (in other words,
the violation of the Pauli exclusion principle) has been
observed in Ref. 10 for the time evolution of the 1-RDM
subject to the Lindblad operator. A generalization of the
Lindblad operator to preserve fermion statistics is necessary
for treating environmental effects such as noise and dissipation
in the time evolution of effective one-electron theories (i.e.,
in the time-dependent Hartree-Fock and density functional
theories).

In this communication, a general constraint on the
Lindblad operator was derived to ensure that the 1-RDM
generated by the quantum Liouville equation satisfies the
Pauli exclusion principle for all time. Specifically, we showed
that if the Lindbladian matrix is constrained to commute
with its adjoint, then the 1-RDM satisfies the Pauli exclusion
principle at all times, meaning that during the time evolution,
its eigenvalues always lie in the interval [0,1]. We formally
derived this result by showing that if the Lindbladian
matrix commutes with its adjoint, then the Lindblad operator
preserves the non-negativity of both the one-particle RDM 1D
and the one-hole RDM 1Q, that is, 1D ≽ 0 and 1Q ≽ 0, which
imply the Pauli exclusion principle. We also generalized the
results to the addition of multiple Lindblad operators to the
quantum Liouville equation. In that case, it is necessary to
constrain each Lindbladian matrix to commute with its adjoint.
A sufficient condition for the dynamics to obey fermionic

statistics is to constrain the Lindbladian matrix to be either
Hermitian or anti-Hermitian.

The present generalization of Lindblad operator provides
a general framework for incorporating environmental effects,
especially dephasing and dissipation, into the time evolution
of 1-RDMs within effective one-electron theories. Our
generalization reduces to Pershin et al.’s earlier work,10 if
we introduce a rank-one Lindbladian matrix for controlling
the interaction of each occupied orbital with the environment.
Within a rank-one model of the Lindbladian matrices, we
recommend including bath channels for both the occupied
and unoccupied orbitals as a more realistic approximation
that obeys particle-hole symmetry.20,21 N-representable
approximations to the Lindblad operator may be especially
important within the framework of time-dependent density
functional theories that incorporate environmental noise.

ACKNOWLEDGMENTS

D.A.M. gratefully acknowledges the National Science
Foundation (NSF) CHE-1152425, the Army Research Office
(ARO) W911NF-14-P-0048, the Air Force Office of Scientific
Research (USAFOSR) FA9550-14-1-0367, and the Keck
Foundation for their generous financial support.

1R. P. Feynman and F. L. Vernon, Ann. Phys. 24, 118 (1963).
2U. Weiss, Quantum Dissipative Systems, Series in Modern Condensed Mat-
ter Physics (World Scientific, Singapore, 2006), Vol. 10.

3H.-P. Breuer and F. Petruccione, The Theory of Open Quantum Systems
(Oxford University Press, Oxford, 2002).

4J. von Neumann, Mathematical Foundations of Quantum Mechanics
(Princeton University Press, Princeton, NJ, 1955).

5M. Berman and R. Kosloff, Comput. Phys. Commun. 63, 1 (1991).
6G. Lindblad, Commun. Math. Phys. 48, 119 (1976).
7V. Gorini, A. Kossakowski, and E. C. G. Sudarshan, J. Math. Phys. 17, 821
(1976).

8H. Spohn, Rev. Mod. Phys. 52, 569 (1980).
9D. Kohen, C. C. Marston, and D. J. Tannor, J. Chem. Phys. 107, 5236 (1997).

10Yu. V. Pershin, Y. Dubi, and M. Di Ventra, Phys. Rev. B 78, 054302 (2008).
11A. E. Rothman and D. A. Mazziotti, J. Chem. Phys. 132, 104112 (2010).
12R. Rosati, R. C. Iotti, F. Dolcini, and F. Rossi, Phys. Rev. B 90, 125140

(2014).
13A. J. Coleman, Rev. Mod. Phys. 35, 668 (1963).
14D. A. Mazziotti, Phys. Rev. Lett. 108, 263002 (2012).
15R. Chakraborty and D. A. Mazziotti, Phys. Rev. A 89, 042505 (2014).
16T. H. Dunning, Jr., J. Chem. Phys. 90, 1007 (1989).
17M. W. Schmidt, K. K. Baldridge, J. A. Boatz et al., J. Comput. Chem. 14,

1347 (1993).
18Maple 18 (Maplesoft, Waterloo, 2014).
19E. Hairer, S. Nørsett, and G. Wanner, Solving Ordinary Differential Equa-

tions I: Nonstiff Problems, 2nd ed. (Springer-Verlag, Berlin, 1993).
20R. Erdahl, J. Math. Phys. 13, 1608 (1972).
21M. Ruskai, Phys. Rev. A 5, 1336 (1972).

http://dx.doi.org/10.1016/0003-4916(63)90068-X
http://dx.doi.org/10.1016/0010-4655(91)90233-B
http://dx.doi.org/10.1007/BF01608499
http://dx.doi.org/10.1063/1.522979
http://dx.doi.org/10.1103/RevModPhys.52.569
http://dx.doi.org/10.1063/1.474887
http://dx.doi.org/10.1103/PhysRevB.78.054302
http://dx.doi.org/10.1063/1.3320817
http://dx.doi.org/10.1103/PhysRevB.90.125140
http://dx.doi.org/10.1103/RevModPhys.35.668
http://dx.doi.org/10.1103/PhysRevLett.108.263002
http://dx.doi.org/10.1103/PhysRevA.89.042505
http://dx.doi.org/10.1063/1.456153
http://dx.doi.org/10.1002/jcc.540141112
http://dx.doi.org/10.1063/1.1665885
http://dx.doi.org/10.1103/PhysRevA.5.1336

